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X-ray free-electron lasers solve a number of difficulties in protein crystal-

lography by providing intense but ultra-short pulses of X-rays, allowing

collection of useful diffraction data from nanocrystals. Whereas the diffraction

from large crystals corresponds only to samples of the Fourier amplitude of the

molecular transform at the Bragg peaks, diffraction from very small crystals

allows measurement of the diffraction amplitudes between the Bragg samples.

Although highly attenuated, these additional samples offer the possibility of

iterative phase retrieval without the use of ancillary experimental data [Spence

et al. (2011). Opt. Express, 19, 2866–2873]. This first of a series of two

papers examines in detail the characteristics of diffraction patterns from

collections of nanocrystals, estimation of the molecular transform and the noise

characteristics of the measurements. The second paper [Chen et al. (2014). Acta

Cryst. A70, 154–161] examines iterative phase-retrieval methods for recon-

structing molecular structures in the presence of the variable noise levels in such

data.

1. Introduction

The three major problems plaguing crystallographers since the

dawn of X-ray crystallography are that of crystal preparation,

radiation damage and phase determination. The first problem

is significant as complex molecules are difficult to crystallize

into well diffracting macrocrystals – membrane proteins being

one prominent example (DeLucas, 2009). The second problem

resides in the fact that the incident X-ray flux must be

increased to obtain accurate high-resolution diffraction data,

leading to a greater radiation dose that can damage the sample

and counteract the gain in resolution. The final obstacle

derives from the inability to measure the phase information of

the incoming wavefront, thus preventing a direct inversion of

the diffraction pattern via the inverse Fourier transform. This

last difficulty is a result of crystal periodicity giving only

discrete Bragg reflections that sample the amplitude of the

molecular transform with no information between the Bragg

samples. These data undersample the Fourier amplitude,

leaving the phase problem underdetermined (Millane, 1990).

The recent development of a new type of X-ray source, the

X-ray free-electron laser (XFEL), has the potential to solve all

three problems via its ability to generate intense but extremely

brief X-ray pulses. Appropriate signal levels can be attained

whilst sidestepping radiation damage, as the duration of these

X-ray pulses can be arranged such that they terminate before

significant development of the damaging photoelectron

cascade (Barty et al., 2012), meaning that diffraction patterns

from a crystal can be obtained before the molecular structure

is significantly perturbed (Neutze et al., 2000). The high-

intensity X-ray pulse enables measurable diffraction data to

be obtained from crystals only a few unit cells across, so-called

‘nanocrystals’. Such small crystals have the advantage that

they can aid the solution to the phase problem by providing

information between the Bragg peaks (Sayre, 1952; Miao &

Sayre, 2000), and at the same time being free of difficulties

surrounding the growth of macroscopic protein crystals. The

coherent diffraction imaging of the molecular density via these

nanocrystals is thus referred to as ‘nanocrystallography’.

The proposed approach using nanocrystals for direct

phasing can be considered an alternative to approaches based

on diffraction by noncrystalline specimens for which the

diffraction is inherently stronger between the Bragg positions.

There are two such approaches. The first approach is one-

molecule-per-shot methods, which have shown some success

for a very large virus particle for which projections of the

electron density were reconstructed at low resolution (Seibert

et al., 2011). However, the diffraction from single, smaller

molecules is extremely weak, whereas the use of nanocrystals

concentrates the scattering and the coherent amplification of

Bragg diffraction brings the signal far above the background.

Furthermore, the use of nanocrystals also has the advantage

that the diffraction patterns can be brought accurately into

alignment and merged by indexing the Bragg spots, unlike

single-particle studies, where determination of the relative

orientations of successive molecules is more difficult than

crystallographic indexing. The second approach uses diffrac-

tion of XFEL pulses by a collection of a large number of
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randomly oriented single molecules (as in a solution) and the

electron density is determined by analysis of the angular

correlations using a method first proposed by Kam (1977). The

potential of the Kam method for imaging using XFELs was

described by Saldin et al. (2011) and subsequently demon-

strated for simple test particles (Starodub et al., 2012). While

this method has the advantage of not having to utilize the

suppressed diffraction between the Bragg positions for the

case of nanocrystals and has considerable potential, it too has

yet to be demonstrated for more complex, lower-symmetry

particles or molecules. We also note that inelastic Compton

scattering is negligible at low beam energies, but will form a

smoothly varying background comparable with other forms of

noise such as readout and electronic noise at higher energies.

The Linac Coherent Light Source (LCLS) located at the

Stanford Linear Accelerator Center currently generates

pulses of hard X-rays with pulse lengths between 10 and 300 fs

with approximately 1012 photons per pulse (Chapman, 2009;

Spence et al., 2012). A liquid microjet injection set-up

(Weierstall et al., 2012) as shown pictorially in Fig. 1 is used to

introduce fully hydrated nanocrystals into the pulsing XFEL

beam. In the experiments undertaken so far, diffraction

patterns are recorded from a succession of nanocrystals of

different sizes in random orientations at the rate of about 100

snapshot diffraction patterns per second (Chapman et al.,

2011). The X-ray pulses are so brief that they terminate before

the effects of radiation damage develop. This approach has

been applied to the plant protein group Photosystem I (Kirian

et al., 2011) and hen egg white lysozyme (Boutet et al., 2012),

where the assembled data have been shown to be consistent

with their known structures. Recently, the previously unknown

structure of Trypanosoma brucei cysteine protease cathepsin

B has also been solved using femtosecond nanocrystallo-

graphy in conjunction with molecular replacement for phase

determination (Redecke et al., 2013). A method of phasing

non-identical, randomly oriented nanocrystal snapshot

diffraction patterns would thus address three of the most

important problems of protein crystallography – crystal

quality, radiation damage and the phase problem.

It is well known that if one has access to the continuous

diffraction amplitude, i.e. between, as well as at, the

reciprocal-lattice points, then the phase problem can be solved

without any ancillary experimental data (Sayre, 1952; Millane,

1990; Miao et al., 1999; Miao & Sayre, 2000). Using this fact,

Spence et al. (2011) have proposed a novel phasing method

using XFEL data from nanocrystals. Their strategy extracts an

estimate of the amplitude of the continuous molecular trans-

form from the millions of snapshot diffraction patterns from

nanocrystals of varying sizes injected into the path of the

femtosecond XFEL beam. The data from size-varying nano-

crystals are indexed and merged in a three-dimensional

diffraction volume before any phasing is attempted – indivi-

dual nanocrystals are not phased. Averaging the intensity data

around each Bragg peak allows the finite-size effect of the

nanocrystals to be estimated without any prior knowledge of

their size distribution, which is then used, together with the

diffraction data, to estimate the molecular transform. Iterative

phase retrieval can then in principle be used to reconstruct the

protein electron density from the molecular transform. The

inherent difficulty with this method, however, is that the

diffraction signal between the Bragg reflections is weak and so

the derived continuous molecular transform suffers from a

low signal-to-noise ratio (SNR) in those regions, negatively

affecting the success of phase retrieval. Furthermore, there is a

trade-off in regards to nanocrystal size, since while smaller

crystals give less amplification of the noise between the Bragg

reflections, the overall diffracted intensity is weaker.

Recently, Elser (2013) has proposed an alternative

approach that uses the intensities as well as their gradients at

the Bragg reflections to reconstruct the electron density from

XFEL nanocrystal diffraction data. This avoids use of the

weak amplitudes between the Bragg reflections but requires a

rather noise-sensitive estimate of the intensity gradients.

In this paper we examine in detail the characteristics of

diffraction patterns from a collection of nanocrystals of

different sizes and shapes, estimation of the molecular trans-

form from such diffraction patterns and the signal-to-noise

characteristics of the molecular transform estimate that would

be used for phasing. In the second paper (Chen et al., 2014) we

describe how iterative phasing methods can be adapted to

ameliorate the effects of the particular distribution of signal-

to-noise found in this problem.

2. Diffraction by finite crystals

We begin by considering diffraction by small crystals (see, e.g.,

Vartanyants & Robinson, 2001; Als-Nielsen & McMorrow,

2011). We assume here that the nanocrystal lattice is well

ordered. It is possible that disorder may be significant as a

result of the large surface-to-volume ratio of nanocrystals

however (Dilanian et al., 2013). There are a variety of possible

kinds of disorder that could be present, but there is currently

little information available on disorder in protein nanocrystals

(apart from some results from atomic force microscopy on

nanocrystals larger than those we consider). However, the fact

that diffraction patterns from nanocrystals as small as nine

unit cells across show strong interference fringes (Chapman et

al., 2011) indicates that the effects of disorder are quite small,

maybe because the crystals are smaller than the mosaic

domains. Highly mobile molecules on the nanocrystal surface

will contribute only diffuse background diffraction which

would have little impact on the proposed phasing method.
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Figure 1
Experimental set-up of diffraction-pattern collection from a stream of
nanocrystals.



Likewise, disorder that is dominated by uncorrelated distor-

tions of the crystal lattice will decrease the amplitudes of the

Bragg reflections with increasing resolution but will not

change their profile shapes, and will add a slowly varying

diffuse background (Stroud & Millane, 1996; Welberry, 2004),

neither of which will have an effect on the methods proposed.

If correlated distortions of sufficient magnitude are present,

then the Bragg profiles would broaden with increasing reso-

lution (Stroud & Millane, 1996; Welberry, 2004), which would

require modification of the methods proposed. However, as

mentioned above, there is little evidence of such distortions in

diffraction patterns obtained so far from nanocrystals.

Consider first a one-dimensional molecule embedded inside

a unit cell of length a on the interval ð�a=2; a=2Þ and denote

the electron density inside this cell by f ðxÞ. The unit cell is

repeated N times along the x direction and centered on the

origin, giving a one-dimensional crystal of size N as shown in

Fig. 2. In this paper we consider only crystals consisting of an

integral number of a single kind of unit cell. Effects due to

different kinds of and incomplete unit cells that can occur

when there is more than one molecule in the unit cell are

discussed elsewhere (Chen & Millane, 2013; Liu et al., 2014).

The electron density of the crystal, gðN; xÞ, can be expressed

as the convolution of f ðxÞ with a comb function consisting of a

train of N delta functions spaced by a,

gðN; xÞ ¼ f ðxÞ �
XN�1

h¼0

� x� haþ
1

2
N � 1ð Þa

� �
; ð1Þ

where � denotes convolution. Note that since we have chosen

the origin to be centered on the crystal, the position of the

central unit cell(s) about the origin is different for N odd and

N even, as shown in Fig. 2.

A general expression for hard X-ray scattering from

nanocrystals in three dimensions is given by Kirian et al.

(2010). In the one-dimensional case, the complex diffraction

pattern in the far-field is proportional to GðN; uÞ, the Fourier

transform of gðN; xÞ (Als-Nielsen & McMorrow, 2011), so that

GðN; uÞ ¼ FðuÞ exp
�
i�ðN � 1Þau

� PN�1

h¼0

exp �i2�hauð Þ; ð2Þ

with FðuÞ being the Fourier transform of one unit cell, referred

to henceforth as the molecular transform. Note that nano-

crystal diffraction data are averaged over thousands of

nanocrystals in different orientations in a procedure called

Monte Carlo integration (Kirian et al., 2010). This has the

effect of averaging out different partialities for samples of the

continuous intensity so that curvature of the Ewald sphere is

automatically accounted for. Evaluating the geometric series

in equation (2) gives

GðN; uÞ ¼ FðuÞSðN; uÞ; ð3Þ

where

SðN; uÞ ¼
sin �Nauð Þ

sin �auð Þ
: ð4Þ

The intensity of the diffraction pattern from a crystal of this

size, IðN; uÞ, is equal to jGðN; uÞj2, or

IðN; uÞ ¼ FðuÞ
�� ��2 SðN; uÞ

�� ��2; ð5Þ

such that the crystal-size-dependent function that modulates

the intensities of the molecular transform is

SðN; uÞ
�� ��2¼ sin2 �Nauð Þ

sin2 �auð Þ
; ð6Þ

and is referred to here as the ‘shape transform’ for a one-

dimensional crystal of size N. The observed diffraction

intensity from a crystal is therefore the squared magnitude of

the molecular transform modulated by the shape transform.

The effect of this modulation is illustrated in Fig. 3(a), where

the reciprocal-space axis is normalized such that the Bragg

peaks lie on integer values. As N tends to infinity, jSðN; uÞj2

converges to a comb function, modeling the situation in

conventional crystallography with macrocrystals where only

the Bragg reflections are observed.

An alternative description for diffraction by a finite crystal

uses a truncated infinite crystal. The diffraction is then

expressed as a convolution of the Bragg reflections from an

infinite crystal with a shape transform that is different to

SðN; uÞ. The relationship between these two descriptions is

described in the Appendix.

2.1. A collection of small crystals

In femtosecond nanocrystallography, diffraction patterns

are collected from many crystals of varying sizes as they pass

randomly across a pulsing XFEL beam. Assuming that the

orientation of each pattern can be determined by automated

Miller indexing (Kirian et al., 2010; White et al., 2012), the

averaged diffracted intensity can be obtained. This averaged

diffracted intensity is derived as follows. Let angle brackets

denote averaging over the corresponding subscript variables

and let IðNn; uÞ, SðNn; uÞ and Nn be the diffracted intensity,

shape transform and the number of unit cells, for the nth

nanocrystal, respectively. Writing IðNn; uÞ as InðuÞ and

SðNn; uÞ as SnðuÞ, the diffracted intensity averaged over a large
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Figure 2
A one-dimensional crystal with N unit cells for (a) N odd and (b) N even.



number of diffraction patterns from crystals of different sizes

is then

InðuÞ
� �

n
¼
P
N

PðNÞIðN; uÞ; ð7Þ

where PðNÞ is the probability density function (p.d.f.) of the

distribution of nanocrystal sizes N. Substituting for the

intensity of a single crystal from equation (5) gives

InðuÞ
� �

n
¼ FðuÞ
�� ��2Q2ðuÞ; ð8Þ

where Q2ðuÞ is the averaged shape transform function, i.e.

Q2ðuÞ ¼ jSnðuÞj
2

� �
n
¼
X

N

PðNÞjSðN; uÞj2

¼
X

N

PðNÞ
sin2 �Nauð Þ

sin2 �auð Þ
: ð9Þ

Fig. 3(b) shows a plot of hInðuÞin with the sizes of the nano-

crystals following a truncated Gaussian distribution with a

mean of five unit cells and a standard deviation of 5/3 unit

cells. The truncation is due to the requirement that N � 1 and

in this case � is chosen to be small enough that the size

distribution is essentially Gaussian. Note that by summing

over the shape transform for various sized crystals, the zeroes

of jSðN; uÞj2 have been averaged out, making Q2ðuÞ strictly

positive for all u.

The maxima of the averaged shape transform occur at the

Bragg peaks at ub ¼ k=a, where k is an integer. Evaluating

Q2 uð Þ via equation (9) at these positions and noting that

jSðN; ubÞj
2
¼ N2 yields

Q2 ubð Þ ¼
P
N

P Nð ÞN2; ð10Þ

i.e. Q2 uð Þ at the Bragg peaks is equal to the second moment of

PðNÞ. For a Gaussian distribution of crystallite sizes, taking the

continuum limit for N, we therefore have that

Q2 ubð Þ ’ �
2
þ �2; ð11Þ

where � and � are the mean and standard deviation of the

crystallite size distribution, respectively. For example, for the

case above, � ¼ �=3, which results in Q2ðubÞ ’ 1:1�2. In

general, unless the crystallite size distribution is quite broad,

we have that Q2ðubÞ ’ �
2.

The minimum values of the averaged shape transform occur

halfway between adjacent Bragg peaks at ubh ¼ ð2k� 1Þ=2a.

Substituting this value of u into equation (9) gives

Q2 ubhð Þ ¼
P

N odd

P Nð Þ: ð12Þ

It is reasonable to assume that
P

N odd PðNÞ ’
P

N even PðNÞ

and since
P

N PðNÞ ¼ 1, the minimum value of the averaged

shape transform is

Q2 ubhð Þ ’ 1=2 ð13Þ

for any P Nð Þ.

2.2. The inverse averaged shape transform

The inverse of the averaged shape transform is of relevance

later in this paper. Using equation (9) shows that
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Figure 3
Diffracted intensity (solid line) (a) from a one-dimensional crystal of size
five unit cells, and (b) averaged over a collection of one-dimensional
crystals with mean size of five unit cells and standard deviation of 5/3 unit
cells. The envelope (dashed line) is the squared amplitude of the
molecular transform.

Figure 4
(a) The averaged shape transform and (b) its inverse for two Gaussian
size distributions both with a mean of five unit cells but one with a
standard deviation of 5/3 unit cells (red curve) and the other with a
standard deviation of one unit cell (blue curve). The sinusoidal
approximation for the inverse averaged shape transform given by
equation (15) is shown by the dashed line in (b).



1

Q2 uð Þ
¼ 2 sin2 �auð Þ 1�

X
N

P Nð Þ cos 2�Nauð Þ

" #�1

: ð14Þ

The summation in equation (14) approximates a Poisson sum

and therefore tends to vanish except when the distribution

PðNÞ is so narrow such that there are an insufficient number of

cosine terms in the summation for cancellation. Therefore, we

expect that except for narrow crystallite size distributions

1

Q2 uð Þ
’ 2 sin2 �auð Þ: ð15Þ

The function 1=Q2ðuÞ and the approximation [equation (15)]

are shown in Fig. 4(b) for two crystal size distributions with the

same mean but different standard deviations. The inverse

averaged shape transform is closely approximated by equation

(15), except for deviations occurring for the narrower size

distribution.

3. The three-dimensional case

In reality the crystals are three dimensional. Following the

derivations above, for a crystal of dimension N1 � N2 � N3

unit cells, the diffracted complex amplitude is given by

GðN; uÞ ¼ FðuÞSðN; uÞ; ð16Þ

where u is the position vector in reciprocal space,

N ¼ ðN1;N2;N3Þ is a column vector of the number of unit cells

in each crystal direction, a1, a2 and a3 are the crystal axis of the

unit cell, and S N; uð Þ is the three-dimensional shape trans-

form, i.e.

SðN; uÞ ¼
sinð�N1a1 � uÞ

sinð�a1 � uÞ
�

sinð�N2a2 � uÞ

sinð�a2 � uÞ
�

sinð�N3a3 � uÞ

sinð�a3 � uÞ
:

ð17Þ

The diffracted intensity is then given by

I N; uð Þ ¼ jF uð Þj2jS N; uð Þj
2: ð18Þ

Consider now a distribution of crystal sizes with p.d.f.

PðNÞ ¼ PðN1;N2;N3Þ such that PðNÞdN is the probability of a

crystal size falling within the interval ðN1;N1 þ dN1Þ,

ðN2;N2 þ dN2Þ and ðN3;N3 þ dN3Þ. A wide range of forms for

PðNÞ is theoretically possible but we assume here, for simpli-

city, that the p.d.f. is jointly normal, i.e.

P Nð Þ ¼
1

½ð2�Þ3 detðCÞ�1=2
exp �

1

2
N� lð Þ

T
C�1 N� lð Þ

� �
;

ð19Þ

where l ¼ ð�1; �2; �3Þ is a column vector of the mean crystal

sizes in each crystal axis direction, C is the covariance matrix

given by

C ¼

�2
1 �2

12 �2
13

�2
12 �2

2 �2
23

�2
13 �2

23 �2
3

0
@

1
A; ð20Þ

and detðCÞ and C�1 denote the determinant and inverse of C,

respectively. If the crystal lengths N1, N2 and N3 are uncor-

related with each other, i.e. the correlation coefficients

�ij ¼ �
2
ij=�i�j satisfy �12 ¼ �13 ¼ �23 ¼ 0, then the covariance

matrix is diagonal. Because we assume a Gaussian distribu-

tion, the length of a crystal in one direction when the corre-

lation coefficients are zero is independent of the length in the

other directions. In this case, the p.d.f. factorizes as

P Nð Þ ¼ P N1ð ÞP N2ð ÞP N3ð Þ; ð21Þ

where

P Nið Þ ¼
1

ð2�Þ1=2�i

exp �
Ni � �ið Þ

2

2�2
i

	 

; ð22Þ

for i ¼ 1; 2; 3. In general, we may suppose that complete

independence of the crystal lengths is relatively unlikely since

a crystal that grows in one direction is likely to grow in the

other directions as well, i.e. needle-like or high aspect ratio

crystals are special. Therefore, it is more probable that the

crystal sizes N1, N2 and N3 are positively correlated.

At the other extreme, consider the case where the crystal

sizes in each direction are completely correlated, i.e. the

correlation coefficients satisfy �12 ¼ �13 ¼ �23 ¼ 1. The joint

density is then degenerate with only one degree of freedom,

i.e. an instance of one random variable fixes the other two.

Without loss of generality, assume that N1 is known, drawn

from the single-variable Gaussian distribution given by

equation (22) for i ¼ 1, then the numbers of unit cells in the

other two directions are given by

Ni ¼
�i

�1

N1 � �1ð Þ þ �i; ð23Þ

for i ¼ 2; 3. Equation (23) can be written as

ðNi � �iÞ=ðN1 � �1Þ ¼ �i=�1 which shows that the ratio of the

difference between the length of each crystal edge and its

mean is constant.

However, it is also unlikely in practice that the length of one

crystal edge will fix the other two edges, so it is reasonable that

the correlation coefficients satisfy 0<�ij < 1. Regardless of

the detailed form of PðNÞ, for a collection of crystals the

averaged shape transform in three dimensions is given by

Q2 uð Þ ¼
P
N

P Nð ÞjS N; uð Þj
2: ð24Þ

If the three crystallite edge lengths are independent, equation

(24) is separable and can be written as the product of three

one-dimensional averaged shape transforms, i.e.

Q2 uð Þ ¼
Y3

i¼1

Q2
ðuiÞ ¼

Y3

i¼1

P
Ni

P Nið ÞjS Ni; uið Þj
2: ð25Þ

The results derived in x2.2 for the maxima and minima of the

one-dimensional averaged shape transform are easily

extended to three dimensions. With ub and ubh denoting the

Bragg and half-integer Bragg positions in three dimensions,

respectively, the maxima of Q2ðuÞ have the value

Q2 ubð Þ ¼
P
N

P Nð ÞN2
1 N2

2 N2
3; ð26Þ
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which is approximately equal to �2
1�

2
2�

2
3 for a Gaussian

distribution that is not too broad. The minima of Q2ðuÞ have

the value

Q2 ubhð Þ ’ 1=8: ð27Þ

Example crystallite size p.d.f.s for a two-dimensional crystal

and the resulting averaged shape transforms are shown in Fig.

5 for �1 ¼ �2 ¼ 10, �1 ¼ �2 ¼ 3, and for three values of the

correlation coefficient. Fig. 5 shows that increasing the

correlation between the number of unit cells along each side

of the crystal has only a small effect on the averaged shape

transform. This is shown more clearly in Fig. 6, which shows a

cut along u2 ¼ 1 through the center of the shape transform.

Increasing the correlation slightly sharpens the interference

function, but the effect is small.

The specific form of S N; uð Þ in equation (17) assumes that

the crystals are all parallelepipeds. In reality, the crystals will

adopt a variety of different sizes and shapes. This is of no

significance in practice, however, since Q2ðuÞ in equation (24)

is the average over the appropriate set of shape transforms

S N; uð Þ, and Q2ðuÞ is estimated from the diffraction data and

not calculated using equation (24). As described by Dilanian et

al. (2013), other effects such as crystal disorder are also

automatically incorporated into Q2ðuÞ that is estimated from

the diffraction data.

4. Estimating the molecular transform

It is clear from equation (8) that the magnitude of the mole-

cular transform can be obtained by dividing the averaged

measured intensity by the averaged shape transform, i.e. in the

one-dimensional case

FðuÞ
�� ��2¼ InðuÞ

� �
n

Q2ðuÞ
: ð28Þ

In general, the nanocrystal size distribution PðNÞ, and thence

Q2ðuÞ, is unknown. However, Spence et al. (2011) describe a

method for estimating Q2ðuÞ directly from the diffraction data

using the fact that the shape transform is the same around

each Bragg reflection, whereas the molecular transform is

different but slow-varying in the vicinity of a Bragg peak.

Averaging the diffraction intensities over fixed regions around

many different reflections should preserve the shape trans-

form but encourage the molecular transform to tend towards a

constant value, i.e. smoothing it out to generate an average

proportional to the shape transform for that particular

diffraction pattern. Thus averaging over all Bragg peaks in

many patterns from crystals of varying sizes gives an estimate

of the averaged shape transform around one Bragg peak,

which can be translated periodically throughout the reciprocal

lattice to yield an estimate of the averaged shape transform

function, as shown in Fig. 7. Spence et al. (2011) have simu-

lated this process for realistic experimental conditions and

shown that it is feasible to generate an estimate of the mole-

cular transform magnitude using equation (28) by using a

sufficiently large number of diffraction patterns.

We show here that such a procedure does converge to the

averaged shape transform. Define a ‘Bragg region’ associated

with each Bragg peak as a region with boundaries equidistant

between that peak and the nearest neighboring peaks. The

diffracted intensity in each Bragg region is then averaged over

all Bragg regions. Let hib denote the average over the Bragg

regions and hib;n the average over the Bragg regions from all
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Figure 5
P.d.f.s (left) and corresponding averaged shape transforms Q2ðu1; u2Þ

(right) for �12 ¼ 0 (top), �12 ¼ 0:5 (middle), �12 ¼ 0:9 (bottom).

Figure 6
Normalized averaged shape transform profiles Q2ðu1; 1Þ for � ¼ 0 (top
curve), � ¼ 0:5 (center curve) and � ¼ 0:9 (bottom curve).



diffraction patterns, then referring to equation (5), averaging

over all Bragg regions from all patterns gives

Inðu� ubÞ
� �

b;n
¼ Fðu� ubÞ

�� ��2 Snðu� ubÞ
�� ��2D E

b;n
: ð29Þ

Since the shape transform is invariant under translations ub,

jSnðu� ubÞj
2
¼ jSnðuÞj

2, and since the molecular transform is

the same for all patterns, it is independent of n. Furthermore,

the molecular transform and the shape transform are uncor-

related, so that equation (29) reduces to

Inðu� ubÞ
� �

b;n
¼ Fðu� ubÞ

�� ��2D E
b
Q2
ðuÞ: ð30Þ

Consider now the average over the molecular transform,

hjFðu� ubÞj
2
ib, in equation (30). Denote the sum of jFðuÞj2

over B Bragg regions, after shifting them to the origin, by

KBðuÞ, so that

KBðuÞ ¼
X

b

ðBÞ F u�
b

a

� �����
����

2

; ð31Þ

where
PðBÞ

b denotes the sum over B Bragg regions indexed by

b. Equation (31) can be written as

KBðuÞ ¼ jF uð Þj2 �
X

b

ðBÞ� u�
b

a

� �
: ð32Þ

Letting B!1 and taking the inverse Fourier transform,

equation (32) becomes

k1ðxÞ ¼ aAðxÞ
P1

b¼�1

� x� bað Þ; ð33Þ

where AðxÞ ¼ f ðxÞ � f ð�xÞ is the autocorrelation of the

molecular density f ðxÞ and k1ðxÞ is the inverse Fourier

transform of K1ðuÞ. Since f ðxÞ is zero outside ð�a=2; a=2Þ,

AðxÞ is zero outside ð�a; aÞ, so that equation (33) collapses to

k1ðxÞ ¼ aAð0Þ� xð Þ ¼ a
R1
�1

f 2 xð Þ dx � xð Þ: ð34Þ

Taking the Fourier transform of equation (34) gives

K1ðuÞ ¼ a
R1
�1

f 2 xð Þ dx; ð35Þ

i.e. for B!1, KBðuÞ tends to a constant, which we denote K.

Therefore, the average hjFðu� ubÞj
2
ib tends to the constant

K=B for a large number of reflections. Since B is large but

finite in practice, this shows that, referring to equation (30),

the average over the Bragg regions converges to a function

proportional to the averaged shape transform, that is

Q2ðuÞ / Inðu� ubÞ
� �

b;n
; ð36Þ

as required. The above analysis extends straightforwardly to

three dimensions. Thus, the average over all Bragg reflections

from all patterns generates an estimate of the averaged shape

transform which can be inserted into equation (28) to estimate

the molecular transform from the measured intensity.

5. Noise characteristics

In practice, the small values of the averaged shape transform

between the Bragg reflections make estimates of the mole-

cular transform in these regions by the procedure described in

x4 noise sensitive. Heuristically, if we additively decompose

the noisy measured average intensity into its noiseless

component, hInðuÞin, and the noise contribution, noiseðuÞ, then

the Fourier magnitude data used for phasing, denoted jFðuÞjP,

are related to the measured data by

InðuÞ
� �

n
þnoiseðuÞ ¼ FðuÞ

�� ��2
P
Q2
ðuÞ: ð37Þ

Rearranging and substituting for hInðuÞin from equation (8)

shows that

FðuÞ
�� ��2

P
¼ FðuÞ
�� ��2þ noiseðuÞ

Q2ðuÞ
; ð38Þ

so that the measurement noise is amplified in the phasing

magnitude by the inverse of the averaged shape transform,

with the amplification being smallest at the Bragg peaks and

largest halfway between, as illustrated in Fig. 8. The statistics

of this noise amplification process are now treated more

rigorously.
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Figure 7
The averaged shape transform recovery process. The Bragg regions of the
averaged diffracted intensity are bounded by vertical dotted lines which
are fed into an averager represented by a circle with a plus symbol. The
output yields the averaged shape transform around one Bragg region.



5.1. Noise statistics for a large number of patterns

In practice, the detector pixel positions, for a particular

nanocrystal orientation, are mapped into reciprocal space and

then resampled onto a grid for processing. Let the mapped

detector location in reciprocal space for the ith detector pixel

be ui. For ease of description, we consider the intensity

measurements at the detector. We denote by Ii the value of the

squared amplitude of the molecular transform at the ith

detector pixel, and by I in the value of Ii modulated by the

shape transform for the nth nanocrystal at that point, i.e.

I in ¼ jSinj
2Ii where Sin ¼ Sn uið Þ is the shape transform of the

nth nanocrystal at the ith detector pixel. What is recorded at

the detector is a noisy measurement of I in, which we denote

ÎI in. The averaged measured intensity at the ith pixel, denoted

IMi, is calculated by averaging over the available snapshot

diffraction patterns so that

IMi ¼
1

m

Xm

n¼1

ÎI in; ð39Þ

where m is the number of available diffraction patterns. Note

that, in general, m depends on i, but here we use the average

value m over the data set. We denote by IPi the estimate of Ii

that is calculated from the data IMi and is used for phasing, so

that IPi ¼ IMi=Q̂Q2
i , where Q̂Q2

i is the estimate of the averaged

shape transform at pixel i, i.e. Q2
i ¼ Q2ðuiÞ, obtained as

described in x4. Our goal is to find the statistical distribution of

IPi induced by random fluctuations in the detector measure-

ments.

Since the recorded diffraction patterns are weak, we assume

that the measurements are dominated by photon noise. For a

photon-limited system, the noisy detector output is governed

by a Poisson distribution with mean and variance Sin

�� ��2Ii, and

we write this as

ÎI in 	 Po Sin

�� ��2Ii

� �
; ð40Þ

where 	 denotes ‘is distributed as’ and Po �ð Þ denotes the

Poisson distribution with parameter �. Averaging ÎI in over m

patterns, the resulting IMi is approximately normally distrib-

uted for m large. This result is guaranteed by the central limit

theorem under the conditions of Lyapunov (Karr, 1993) which

applies to situations where the random variables summed are

independent but not identically distributed.

The Q̂Q2
i are estimated by averaging the intensities over the

Bragg reflections as well as over the diffraction patterns so

that the errors in Q̂Q2
i are expected to be smaller than those in

IMi. Thus, we replace Q̂Q2
i by Q2

i , i.e. we take Q̂Q2
i to be exact. It is

then readily shown using equation (39) that for large m, the

averaged measured intensity at the ith pixel is normally

distributed with mean Q2
i Ii and variance Q2

i Ii=m, or

IMi 	 N Q2
i Ii;

1

m
Q2

i Ii

� �
; ð41Þ

where Nð�; �2Þ denotes the normal distribution with mean �
and variance �2. In an ideal noiseless system, IMi is of course

equal to Q2
i Ii, which means that the noise on the measured

averaged intensity is normally distributed with a mean of zero

and a variance of Q2
i Ii=m by equation (41). Since IPi is

obtained by dividing IMi by Q2
i , it is also approximately

normally distributed and

IPi 	 N Ii;
Ii

mQ2
i

� �
; ð42Þ

so that the noise on the phasing intensity is governed by a zero

mean normal distribution with variance Ii=ðmQ2
i Þ.

5.2. Quantifying the noise amplification

Having obtained distributions for IMi and IPi along with the

distributions for their respective noise terms, the signal-to-

noise ratio can be computed. For a collection of strictly posi-

tive measurements, the SNR can be defined as the mean of the

signal divided by the standard deviation of the noise (or,

equivalently, of the signal) (Kundu, 2010). Let SNRMi and

SNRPi denote the SNR for the measured intensity IMi and the

phasing intensity IPi, respectively. Using the expressions for

the mean and standard deviation of the noise signal derived

above, we have that

SNRMi ¼ SNRPi ¼ ðmQ2
i IiÞ

1=2; ð43Þ

i.e. that the SNRs for individual pixels after the averaging and

division steps are the same. The overall SNR of the whole data

set (all p pixels) is of interest and is calculated as the mean of

the signal over all detector pixels, divided by the square root of

the mean of the variances of the noise over all detector pixels,

and is denoted SNRM and SNRP, for the measured and

phasing intensities, respectively. Using equations (41) and (42)

gives

SNRM ¼
Pp
i¼1

Q2
i Ii

� �1=2
m

p

� �1=2

ð44Þ

and

SNRP ¼

Pp
i¼1 IiPp

i¼1 Ii=Q2
i

� �1=2

m

p

� �1=2

: ð45Þ
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Figure 8
Illustration of the intensity of the molecular transform recovered by
dividing a noisy averaged intensity by the averaged shape transform.
Note that the resulting noise is a minimum at the Bragg positions and a
maximum halfway between.



To simplify these expressions, let there be L pixels in each

Bragg region and B Bragg regions altogether, then p ¼ LB.

The fact that all Bragg regions have identical averaged shape

transforms means that

Pp
i¼1

Q2
i ¼ B

PL
l¼1

Q2
l ; ð46Þ

where the sum over l is over the pixels in one Bragg region. As

shown in the previous section, summing the molecular trans-

form intensity over many Bragg reflections converges to a

constant, so we can write

Pp
i¼1

Ii ¼ L
PB
b¼1

Ib; ð47Þ

where the sum over b is over the equivalent pixel positions in

all Bragg regions. Equations (46) and (47) imply that

Xp

i¼1

Q2
i Ii ¼

1

p

Xp

i¼1

Q2
i

 ! Xp

i¼1

Ii

 !
: ð48Þ

Substituting this result into equation (44) for SNRM and using

an identical argument to factor the sum in the denominator of

equation (45) involving the inverse averaged shape transform

for SNRP gives

SNRM ¼
1

p
m

Xp

i¼1

Q2
i

 ! Xp

i¼1

Ii

 !" #1=2

ð49Þ

and

SNRP ¼ m
1Pp

i¼1 Q�2
i

� � Xp

i¼1

Ii

 !" #1=2

: ð50Þ

The overall measured SNR, SNRM, thus increases as the

square root of the total number of patterns m and decreases in

proportion to the inverse of the number of detector pixels.

This makes sense as the former determines the number of

different measurements at the same location while the latter

determines the number of different measurements at different

locations.

The two SNRs were calculated for a one-dimensional

diffraction experiment as a function of mean crystallite size. A

Gaussian crystal size distribution with standard deviation

equal to one third of the mean as in x2.1 was used. The sumPp
i¼1 Ii in equations (49) and (50) was set to unity, as was m, as

these do not affect the dependence on mean crystal size. A

total of 11 Bragg peaks were simulated and the number of

detector pixels p ¼ 1101. The results are shown versus mean

crystallite size in Fig. 9(a).

The behaviors of SNRM and SNRP in Fig. 9(a) can be

explained as follows. SNRM and SNRP are proportional to the

square root of
P

i Q2
i and 1=

P
i Q�2

i , respectively. As shown in

x2.1, the maximum value of Q2
i is proportional to the second

moment of the crystal size distribution, which increases

without bound as the mean crystallite size increases. This

explains the monotonic increase of SNRM with mean crystal-

lite size. For SNRP, the increase in SNR for larger crystals, due

to stronger scattering, is balanced by the division by a

narrower averaged shape transform for the larger crystals, and

SNRP approaches a constant as the mean crystallite size

increases. An approximation to SNRP can be obtained as

follows. Using equation (15), the sum
Pp

i¼1 Q�2
i over a large

number of detector pixels is given approximately by

ph2 sin2
ð�auÞiu ¼ p, and substituting into equation (50)

gives

SNRP ’
m

p

Xp

i¼1

Ii

 !1=2

: ð51Þ

A key factor in using this methodology to phase the diffraction

data is the effect on the SNR that results from dividing by the

averaged shape transform, and how this is influenced by the

mean crystallite size. This effect is quantified by calculating the

ratio of the SNR at the phasing stage compared to that of the

data measured at the detector, i.e. SNRP=SNRM, which, using

equations (49) and (50), is given by

SNRP

SNRM

¼
1

p

Xp

i¼1

Q2
i

Xp

i¼1

1

Q2
i

 !�1=2

: ð52Þ

This SNR ratio was calculated as a function of the mean

crystal size with the same parameters as above and is shown in

Fig. 9(b). The ratio is unity for crystals with a single unit cell

(single molecule) and decreases as the mean crystallite size

increases. This decrease in SNRP=SNRM with increasing mean

crystallite size gives a quantitative result that may assist in the

design of experiments. Note that SNRP increases with

increasing incident X-ray pulse flux and with an increasing

number of patterns m. The results presented in this section

extend straightforwardly to the three-dimensional case and

the signal-to-noise ratios show the same kind of general
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Figure 9
(a) Overall SNR of the diffraction pattern measured at the detector,
SNRM (dashed line) and the phasing SNR, SNRP (solid line), and (b) the
ratio SNRP/SNRM as a function of mean crystal size.



behavior as a function of mean crystallite size, although it will

be different in detail, depending on the kinds of crystal shapes

present.

6. Summary

Diffraction data recorded from a stream of nanocrystals in an

XFEL can be processed to provide an estimate of the

continuous molecular transform, thereby offering the possi-

bility of direct phase retrieval and structure determination in

the absence of other experimental information. A key diffi-

culty with this proposal is the resulting noise level in the

estimate of the molecular transform. We have described in

detail the diffraction from a collection of nanocrystals of

different sizes and shown that the frequency of occurrence of

different crystal shapes (as measured by the correlation

between edge lengths) has only a weak effect on the resulting

averaged shape transform. We also show that averaging over

the diffracted intensity around each Bragg reflection rigor-

ously converges to an estimate of the averaged shape trans-

form. Signal-to-noise properties of the intensity data and the

derived molecular transform have been characterized. Noise

in the measured diffraction is amplified between the Bragg

reflections when the molecular transform for phasing is esti-

mated from the data. Recorded diffraction patterns are

photon limited, but after averaging together multiple patterns,

the noise is normally distributed with a variance proportional

to the measured intensity. Although amplification of the noise

in the estimated molecular transform increases with larger

crystal sizes, the overall SNR is approximately independent of

the mean crystal size due to the increased signal levels from

the larger crystals. The decrease in SNR of the phasing

amplitude over that of the measured data as a function of

mean crystallite size shown in Fig. 9(b) may be useful in

designing experiments.

APPENDIX A
Two descriptions of diffraction by a finite crystal

An alternative expression to equation (3) for diffraction by a

finite crystal can be obtained by considering the finite crystal

as a truncated infinite crystal. This description is derived here

and comparisons are made with equations (3) and (4).

The electron density of a one-dimensional crystal of N unit

cells can be written as

gðN; xÞ ¼

(
g1ðxÞ rect x=Nað Þ N odd

g1ðx� a=2Þ rect x=Nað Þ N even;
ð53Þ

where g1ðxÞ denotes the electron density of an infinite

crystal with the central unit cell centered on the origin as in

Fig. 2(a), and rectðxÞ ¼ 1 for jxj 
 1=2 and zero elsewhere.

Taking the Fourier transform of equation (53) shows that

the complex diffracted amplitude for a finite crystal of size

N is

GðN; uÞ ¼

(
G1ðuÞ � ½Na sincðNauÞ� N odd

½G1ðuÞ expð�i�auÞ� � ½Na sincðNauÞ� N even;

ð54Þ

where G1ðuÞ is the complex diffracted amplitude for an infi-

nite crystal and sincðuÞ ¼ sinð�uÞ=ð�uÞ. Since G1ðuÞ is the

Bragg diffraction pattern, we have that

G1ðuÞ ¼
1

a
FðuÞ

X1
h¼�1

� u�
h

a

� �
: ð55Þ

Substituting equation (55) into equation (54) and combining

the N odd and even cases gives

GðN; uÞ ¼ N
X1

h¼�1

ð�1ÞhðN�1Þ
F

h

a

� �
sinc Na u�

h

a

� �� �
: ð56Þ

Equation (56) is therefore an alternative expression to equa-

tion (3) for GðN; uÞ and shows that the diffraction profile

around each Bragg reflection is a weighted sum of sinc func-

tions. The equivalence between the right-hand sides of equa-

tions (3) and (56) is not obvious, but since their left-hand sides

are the same, the following mathematical identity must be true

for all FðuÞ:

N
X1

h¼�1

ð�1ÞhðN�1Þ
F

h

a

� �
sinc Na u�

h

a

� �� �
� FðuÞ

sin �Nauð Þ

sin �auð Þ
:

ð57Þ

The particular case FðuÞ ¼ 1 leads to the following identity:

N
X1

h¼�1

ð�1ÞhðN�1Þsinc Na u�
h

a

� �� �
¼

sin �Nauð Þ

sin �auð Þ
: ð58Þ

The identity [equation (58)] can be shown directly as follows.

Denoting the left-hand side of equation (58) by HðuÞ, substi-

tuting for the sinc function and considering the cases for N odd

and even shows that

HðuÞ ¼ �
1

�
sinð�NauÞ

1

au
þ 2au

X1
h¼0

ð�1Þh
1

h2 � ðauÞ
2

" #
: ð59Þ

Using the identity given by equation (4.103) of Wheelon

(1968),

X1
h¼0

ð�1Þh
1

h2 � a2
¼ �

�

2a
cosec �að Þ þ

1

�a

	 

; ð60Þ

shows that equation (59) reduces to

HðuÞ ¼
sin �Nauð Þ

sin �auð Þ
; ð61Þ

verifying equation (58).

Although the reflection profiles implied by equation (56)

are a sum of weighted sinc functions, if the crystallites are

sufficiently large, then there is minimal overlap between them,

and the profile in the vicinity of each Bragg reflection reduces

simply to sinc Nauð Þ. The effect of the overlap can be evaluated

approximately by considering the relative contribution from
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just the two neighboring peaks, denoted here by ". At the

reciprocal-lattice point u ¼ h=a,

" ¼
1

F h=að Þ

"
F

hþ 1

a

� �
sinc Na

h

a
�

hþ 1

a

� �� �

þ F
h� 1

a

� �
sinc Na

h

a
�

h� 1

a

� �� �#
; ð62Þ

giving

" ¼ sinc Nð Þ
1

F h=að Þ
F

hþ 1

a

� �
þ F

h� 1

a

� �	 

: ð63Þ

The relative contribution from neighboring reflections

depends on their amplitudes relative to Fðh=aÞ. However, if we

assume that F ðhþ 1Þ=a½ � ’ F ðh� 1Þ=a½ � ’ F h=að Þ, then

" ’ 2 sinc Nð Þ: ð64Þ

The maximum error results when sinð�NÞ ¼ �1 so that the

maximum value of " is

"max ’
2

�N
: ð65Þ

A relative contribution of less than 5% of the value of the

structure factor at u ¼ h=a requires N to be more than

approximately 13 unit cells. In three dimensions the contri-

butions come from six neighboring structure factors, resulting

in "max ’ 6=�N and N greater than about 40 unit cells in each

direction would be required to achieve less than 5% relative

error. The contribution will be larger if the neighboring

reflections are stronger. This analysis shows that for nano-

crystals on the order of ten unit cells across, it is necessary to

use the full shape function SðN; uÞ to describe the diffraction,

rather than just a single sinc function.
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